Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs

2 Jun 2022  ·  Shinji Ito, Taira Tsuchiya, Junya Honda ·

This study considers online learning with general directed feedback graphs. For this problem, we present best-of-both-worlds algorithms that achieve nearly tight regret bounds for adversarial environments as well as poly-logarithmic regret bounds for stochastic environments. As Alon et al. [2015] have shown, tight regret bounds depend on the structure of the feedback graph: \textit{strongly observable} graphs yield minimax regret of $\tilde{\Theta}( \alpha^{1/2} T^{1/2} )$, while \textit{weakly observable} graphs induce minimax regret of $\tilde{\Theta}( \delta^{1/3} T^{2/3} )$, where $\alpha$ and $\delta$, respectively, represent the independence number of the graph and the domination number of a certain portion of the graph. Our proposed algorithm for strongly observable graphs has a regret bound of $\tilde{O}( \alpha^{1/2} T^{1/2} ) $ for adversarial environments, as well as of $ {O} ( \frac{\alpha (\ln T)^3 }{\Delta_{\min}} ) $ for stochastic environments, where $\Delta_{\min}$ expresses the minimum suboptimality gap. This result resolves an open question raised by Erez and Koren [2021]. We also provide an algorithm for weakly observable graphs that achieves a regret bound of $\tilde{O}( \delta^{1/3}T^{2/3} )$ for adversarial environments and poly-logarithmic regret for stochastic environments. The proposed algorithms are based on the follow-the-perturbed-leader approach combined with newly designed update rules for learning rates.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here