Nearly Optimal Regret for Decentralized Online Convex Optimization

14 Feb 2024  ·  Yuanyu Wan, Tong Wei, Mingli Song, Lijun Zhang ·

We investigate decentralized online convex optimization (D-OCO), in which a set of local learners are required to minimize a sequence of global loss functions using only local computations and communications. Previous studies have established $O(n^{5/4}\rho^{-1/2}\sqrt{T})$ and ${O}(n^{3/2}\rho^{-1}\log T)$ regret bounds for convex and strongly convex functions respectively, where $n$ is the number of local learners, $\rho<1$ is the spectral gap of the communication matrix, and $T$ is the time horizon. However, there exist large gaps from the existing lower bounds, i.e., $\Omega(n\sqrt{T})$ for convex functions and $\Omega(n)$ for strongly convex functions. To fill these gaps, in this paper, we first develop novel D-OCO algorithms that can respectively reduce the regret bounds for convex and strongly convex functions to $\tilde{O}(n\rho^{-1/4}\sqrt{T})$ and $\tilde{O}(n\rho^{-1/2}\log T)$. The primary technique is to design an online accelerated gossip strategy that enjoys a faster average consensus among local learners. Furthermore, by carefully exploiting the spectral properties of a specific network topology, we enhance the lower bounds for convex and strongly convex functions to $\Omega(n\rho^{-1/4}\sqrt{T})$ and $\Omega(n\rho^{-1/2})$, respectively. These lower bounds suggest that our algorithms are nearly optimal in terms of $T$, $n$, and $\rho$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here