NECST: Neural Joint Source-Channel Coding

27 Sep 2018  ·  Kristy Choi, Kedar Tatwawadi, Tsachy Weissman, Stefano Ermon ·

For reliable transmission across a noisy communication channel, classical results from information theory show that it is asymptotically optimal to separate out the source and channel coding processes. However, this decomposition can fall short in the finite bit-length regime, as it requires non-trivial tuning of hand-crafted codes and assumes infinite computational power for decoding. In this work, we propose Neural Error Correcting and Source Trimming (NECST) codes to jointly learn the encoding and decoding processes in an end-to-end fashion. By adding noise into the latent codes to simulate the channel during training, we learn to both compress and error-correct given a fixed bit-length and computational budget. We obtain codes that are not only competitive against several capacity-approaching channel codes, but also learn useful robust representations of the data for downstream tasks such as classification. Finally, we learn an extremely fast neural decoder, yielding almost an order of magnitude in speedup compared to standard decoding methods based on iterative belief propagation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here