NeuMMU: Architectural Support for Efficient Address Translations in Neural Processing Units

15 Nov 2019  ·  Bongjoon Hyun, Youngeun Kwon, Yujeong Choi, John Kim, Minsoo Rhu ·

To satisfy the compute and memory demands of deep neural networks, neural processing units (NPUs) are widely being utilized for accelerating deep learning algorithms. Similar to how GPUs have evolved from a slave device into a mainstream processor architecture, it is likely that NPUs will become first class citizens in this fast-evolving heterogeneous architecture space. This paper makes a case for enabling address translation in NPUs to decouple the virtual and physical memory address space. Through a careful data-driven application characterization study, we root-cause several limitations of prior GPU-centric address translation schemes and propose a memory management unit (MMU) that is tailored for NPUs. Compared to an oracular MMU design point, our proposal incurs only an average 0.06% performance overhead.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here