Neural Algorithmic Reasoning for Combinatorial Optimisation

18 May 2023  ·  Dobrik Georgiev, Danilo Numeroso, Davide Bacciu, Pietro Liò ·

Solving NP-hard/complete combinatorial problems with neural networks is a challenging research area that aims to surpass classical approximate algorithms. The long-term objective is to outperform hand-designed heuristics for NP-hard/complete problems by learning to generate superior solutions solely from training data. Current neural-based methods for solving CO problems often overlook the inherent "algorithmic" nature of the problems. In contrast, heuristics designed for CO problems, e.g. TSP, frequently leverage well-established algorithms, such as those for finding the minimum spanning tree. In this paper, we propose leveraging recent advancements in neural algorithmic reasoning to improve the learning of CO problems. Specifically, we suggest pre-training our neural model on relevant algorithms before training it on CO instances. Our results demonstrate that by using this learning setup, we achieve superior performance compared to non-algorithmically informed deep learning models.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here