Reward-Biased Maximum Likelihood Estimation for Neural Contextual Bandits

8 Mar 2022  ·  Yu-Heng Hung, Ping-Chun Hsieh ·

Reward-biased maximum likelihood estimation (RBMLE) is a classic principle in the adaptive control literature for tackling explore-exploit trade-offs. This paper studies the stochastic contextual bandit problem with general bounded reward functions and proposes NeuralRBMLE, which adapts the RBMLE principle by adding a bias term to the log-likelihood to enforce exploration. NeuralRBMLE leverages the representation power of neural networks and directly encodes exploratory behavior in the parameter space, without constructing confidence intervals of the estimated rewards. We propose two variants of NeuralRBMLE algorithms: The first variant directly obtains the RBMLE estimator by gradient ascent, and the second variant simplifies RBMLE to a simple index policy through an approximation. We show that both algorithms achieve $\widetilde{\mathcal{O}}(\sqrt{T})$ regret. Through extensive experiments, we demonstrate that the NeuralRBMLE algorithms achieve comparable or better empirical regrets than the state-of-the-art methods on real-world datasets with non-linear reward functions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here