Neural Network with Local Converging Input (NNLCI) for Supersonic Flow Problems with Unstructured Grids

23 Oct 2023  ·  Weiming Ding, Haoxiang Huang, Tzu Jung Lee, Yingjie Liu, Vigor Yang ·

In recent years, surrogate models based on deep neural networks (DNN) have been widely used to solve partial differential equations, which were traditionally handled by means of numerical simulations. This kind of surrogate models, however, focuses on global interpolation of the training dataset, and thus requires a large network structure. The process is both time consuming and computationally costly, thereby restricting their use for high-fidelity prediction of complex physical problems. In the present study, we develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data. The framework utilizes the local domain of dependence with converging coarse solutions as input, which greatly reduces computational resource and training time. As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps. Different bump geometries and locations are considered to benchmark the effectiveness and versability of the proposed approach. Detailed flow structures, including shock-wave interactions, are examined systematically.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here