Neural Optimization Kernel: Towards Robust Deep Learning

11 Jun 2021  ·  Yueming Lyu, Ivor Tsang ·

Deep neural networks (NN) have achieved great success in many applications. However, why do deep neural networks obtain good generalization at an over-parameterization regime is still unclear. To better understand deep NN, we establish the connection between deep NN and a novel kernel family, i.e., Neural Optimization Kernel (NOK). The architecture of structured approximation of NOK performs monotonic descent updates of implicit regularization problems. We can implicitly choose the regularization problems by employing different activation functions, e.g., ReLU, max pooling, and soft-thresholding. We further establish a new generalization bound of our deep structured approximated NOK architecture. Our unsupervised structured approximated NOK block can serve as a simple plug-in of popular backbones for a good generalization against input noise.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here