Neural Speech Enhancement with Very Low Algorithmic Latency and Complexity via Integrated Full- and Sub-Band Modeling

We propose FSB-LSTM, a novel long short-term memory (LSTM) based architecture that integrates full- and sub-band (FSB) modeling, for single- and multi-channel speech enhancement in the short-time Fourier transform (STFT) domain. The model maintains an information highway to flow an over-complete input representation through multiple FSB-LSTM modules. Each FSB-LSTM module consists of a full-band block to model spectro-temporal patterns at all frequencies and a sub-band block to model patterns within each sub-band, where each of the two blocks takes a down-sampled representation as input and returns an up-sampled discriminative representation to be added to the block input via a residual connection. The model is designed to have a low algorithmic complexity, a small run-time buffer and a very low algorithmic latency, at the same time producing a strong enhancement performance on a noisy-reverberant speech enhancement task even if the hop size is as low as $2$ ms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here