Neural Strokes: Stylized Line Drawing of 3D Shapes

This paper introduces a model for producing stylized line drawings from 3D shapes. The model takes a 3D shape and a viewpoint as input, and outputs a drawing with textured strokes, with variations in stroke thickness, deformation, and color learned from an artist's style... The model is fully differentiable. We train its parameters from a single training drawing of another 3D shape. We show that, in contrast to previous image-based methods, the use of a geometric representation of 3D shape and 2D strokes allows the model to transfer important aspects of shape and texture style while preserving contours. Our method outputs the resulting drawing in a vector representation, enabling richer downstream analysis or editing in interactive applications. read more

PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here