Neurons Equipped with Intrinsic Plasticity Learn Stimulus Intensity Statistics

NeurIPS 2016  ·  Travis Monk, Cristina Savin, Jörg Lücke ·

Experience constantly shapes neural circuits through a variety of plasticity mechanisms. While the functional roles of some plasticity mechanisms are well-understood, it remains unclear how changes in neural excitability contribute to learning. Here, we develop a normative interpretation of intrinsic plasticity (IP) as a key component of unsupervised learning. We introduce a novel generative mixture model that accounts for the class-specific statistics of stimulus intensities, and we derive a neural circuit that learns the input classes and their intensities. We will analytically show that inference and learning for our generative model can be achieved by a neural circuit with intensity-sensitive neurons equipped with a specific form of IP. Numerical experiments verify our analytical derivations and show robust behavior for artificial and natural stimuli. Our results link IP to non-trivial input statistics, in particular the statistics of stimulus intensities for classes to which a neuron is sensitive. More generally, our work paves the way toward new classification algorithms that are robust to intensity variations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here