New Directions in Distributed Deep Learning: Bringing the Network at Forefront of IoT Design

25 Aug 2020  ·  Kartikeya Bhardwaj, Wei Chen, Radu Marculescu ·

In this paper, we first highlight three major challenges to large-scale adoption of deep learning at the edge: (i) Hardware-constrained IoT devices, (ii) Data security and privacy in the IoT era, and (iii) Lack of network-aware deep learning algorithms for distributed inference across multiple IoT devices. We then provide a unified view targeting three research directions that naturally emerge from the above challenges: (1) Federated learning for training deep networks, (2) Data-independent deployment of learning algorithms, and (3) Communication-aware distributed inference. We believe that the above research directions need a network-centric approach to enable the edge intelligence and, therefore, fully exploit the true potential of IoT.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here