Newton-Stein Method: A Second Order Method for GLMs via Stein's Lemma

NeurIPS 2015  ·  Murat A. Erdogdu ·

We consider the problem of efficiently computing the maximum likelihood estimator in Generalized Linear Models (GLMs)when the number of observations is much larger than the number of coefficients (n > > p > > 1). In this regime, optimization algorithms can immensely benefit fromapproximate second order information.We propose an alternative way of constructing the curvature information by formulatingit as an estimation problem and applying a Stein-type lemma, which allows further improvements through sub-sampling andeigenvalue thresholding.Our algorithm enjoys fast convergence rates, resembling that of second order methods, with modest per-iteration cost. We provide its convergence analysis for the case where the rows of the design matrix are i.i.d. samples with bounded support.We show that the convergence has two phases, aquadratic phase followed by a linear phase. Finally,we empirically demonstrate that our algorithm achieves the highest performancecompared to various algorithms on several datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here