Newton-Stein Method: An optimization method for GLMs via Stein's Lemma

28 Nov 2015Murat A. Erdogdu

We consider the problem of efficiently computing the maximum likelihood estimator in Generalized Linear Models (GLMs) when the number of observations is much larger than the number of coefficients ($n \gg p \gg 1$). In this regime, optimization algorithms can immensely benefit from approximate second order information... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet