Reconfigurable Intelligent Computational Surfaces: When Wave Propagation Control Meets Computing

The envisioned sixth-generation (6G) of wireless networks will involve an intelligent integration of communications and computing, thereby meeting the urgent demands of diverse applications. To realize the concept of the smart radio environment, reconfigurable intelligent surfaces (RISs) are a promising technology for offering programmable propagation of impinging electromagnetic signals via external control. However, the purely reflective nature of conventional RISs induces significant challenges in supporting computation-based applications, e.g., wave-based calculation and signal processing. To fulfil future communication and computing requirements, new materials are needed to complement the existing technologies of metasurfaces, enabling further diversification of electronics and their applications. In this event, we introduce the concept of reconfigurable intelligent computational surface (RICS), which is composed of two reconfigurable multifunctional layers: the `reconfigurable beamforming layer' which is responsible for tunable signal reflection, absorption, and refraction, and the `intelligence computation layer' that concentrates on metamaterials-based computing. By exploring the recent trends on computational metamaterials, RICSs have the potential to make joint communication and computation a reality. We further demonstrate two typical applications of RICSs for performing wireless spectrum sensing and secrecy signal processing. Future research challenges arising from the design and operation of RICSs are finally highlighted.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here