NLOST: Non-Line-of-Sight Imaging With Transformer

Time-resolved non-line-of-sight (NLOS) imaging is based on the multi-bounce indirect reflections from the hidden objects for 3D sensing. Reconstruction from NLOS measurements remains challenging especially for complicated scenes. To boost the performance, we present NLOST, the first transformer-based neural network for NLOS reconstruction. Specifically, after extracting the shallow features with the assistance of physics-based priors, we design two spatial-temporal self attention encoders to explore both local and global correlations within 3D NLOS data by splitting or downsampling the features into different scales, respectively. Then, we design a spatial-temporal cross attention decoder to integrate local and global features in the token space of transformer, resulting in deep features with high representation capabilities. Finally, deep and shallow features are fused to reconstruct the 3D volume of hidden scenes. Extensive experimental results demonstrate the superior performance of the proposed method over existing solutions on both synthetic data and real-world data captured by different NLOS imaging systems.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here