No Free Lunch Theorem and Bayesian probability theory: two sides of the same coin. Some implications for black-box optimization and metaheuristics

23 Nov 2013Loris Serafino

Challenging optimization problems, which elude acceptable solution via conventional calculus methods, arise commonly in different areas of industrial design and practice. Hard optimization problems are those who manifest the following behavior: a) high number of independent input variables; b) very complex or irregular multi-modal fitness; c) computational expensive fitness evaluation... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet