Node-Adapt, Path-Adapt and Tree-Adapt:Model-Transfer Domain Adaptation for Random Forest

9 Nov 2016Azadeh S. MozafariDavid VazquezMansour JamzadAntonio M. Lopez

Random Forest (RF) is a successful paradigm for learning classifiers due to its ability to learn from large feature spaces and seamlessly integrate multi-class classification, as well as the achieved accuracy and processing efficiency. However, as many other classifiers, RF requires domain adaptation (DA) provided that there is a mismatch between the training (source) and testing (target) domains which provokes classification degradation... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet