Node Specificity in Convolutional Deep Nets Depends on Receptive Field Position and Size

23 Nov 2015 Karl Zipser

In convolutional deep neural networks, receptive field (RF) size increases with hierarchical depth. When RF size approaches full coverage of the input image, different RF positions result in RFs with different specificity, as portions of the RF fall out of the input space... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet