Non-Convex Boosting Overcomes Random Label Noise

9 Sep 2014  ·  Sunsern Cheamanunkul, Evan Ettinger, Yoav Freund ·

The sensitivity of Adaboost to random label noise is a well-studied problem. LogitBoost, BrownBoost and RobustBoost are boosting algorithms claimed to be less sensitive to noise than AdaBoost... We present the results of experiments evaluating these algorithms on both synthetic and real datasets. We compare the performance on each of datasets when the labels are corrupted by different levels of independent label noise. In presence of random label noise, we found that BrownBoost and RobustBoost perform significantly better than AdaBoost and LogitBoost, while the difference between each pair of algorithms is insignificant. We provide an explanation for the difference based on the margin distributions of the algorithms. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here