Non-convex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances

15 Jun 2020  ·  Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, Mingyi Hong ·

The min-max optimization problem, also known as the saddle point problem, is a classical optimization problem which is also studied in the context of zero-sum games. Given a class of objective functions, the goal is to find a value for the argument which leads to a small objective value even for the worst case function in the given class. Min-max optimization problems have recently become very popular in a wide range of signal and data processing applications such as fair beamforming, training generative adversarial networks (GANs), and robust machine learning, to just name a few. The overarching goal of this article is to provide a survey of recent advances for an important subclass of min-max problem, where the minimization and maximization problems can be non-convex and/or non-concave. In particular, we will first present a number of applications to showcase the importance of such min-max problems; then we discuss key theoretical challenges, and provide a selective review of some exciting recent theoretical and algorithmic advances in tackling non-convex min-max problems. Finally, we will point out open questions and future research directions.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here