Non-Gaussian Component Analysis via Lattice Basis Reduction

16 Dec 2021  ·  Ilias Diakonikolas, Daniel M. Kane ·

Non-Gaussian Component Analysis (NGCA) is the following distribution learning problem: Given i.i.d. samples from a distribution on $\mathbb{R}^d$ that is non-gaussian in a hidden direction $v$ and an independent standard Gaussian in the orthogonal directions, the goal is to approximate the hidden direction $v$. Prior work \cite{DKS17-sq} provided formal evidence for the existence of an information-computation tradeoff for NGCA under appropriate moment-matching conditions on the univariate non-gaussian distribution $A$. The latter result does not apply when the distribution $A$ is discrete. A natural question is whether information-computation tradeoffs persist in this setting. In this paper, we answer this question in the negative by obtaining a sample and computationally efficient algorithm for NGCA in the regime that $A$ is discrete or nearly discrete, in a well-defined technical sense. The key tool leveraged in our algorithm is the LLL method \cite{LLL82} for lattice basis reduction.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here