Non-local Policy Optimization via Diversity-regularized Collaborative Exploration

14 Jun 2020  ·  Zhenghao Peng, Hao Sun, Bolei Zhou ·

Conventional Reinforcement Learning (RL) algorithms usually have one single agent learning to solve the task independently. As a result, the agent can only explore a limited part of the state-action space while the learned behavior is highly correlated to the agent's previous experience, making the training prone to a local minimum. In this work, we empower RL with the capability of teamwork and propose a novel non-local policy optimization framework called Diversity-regularized Collaborative Exploration (DiCE). DiCE utilizes a group of heterogeneous agents to explore the environment simultaneously and share the collected experiences. A regularization mechanism is further designed to maintain the diversity of the team and modulate the exploration. We implement the framework in both on-policy and off-policy settings and the experimental results show that DiCE can achieve substantial improvement over the baselines in the MuJoCo locomotion tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here