Non-parametric Probabilistic Load Flow using Gaussian Process Learning

8 Nov 2019  ·  Parikshit Pareek, Chuan Wang, Hung D. Nguyen ·

In this work, we propose a non-parametric probabilistic load flow (NP-PLF) technique based on the Gaussian Process (GP) learning to understand the power system behavior under uncertainty for better operational decisions. The technique can provide "semi-explicit" power flow solutions by implementing the learning and testing steps which map control variables to inputs. The proposed NP-PLF leverages upon GP upper confidence bound (GP-UCB) sampling algorithm. The salient features of this NP-PLF method are: i) applicable for power flow problem having power injection uncertainty with an unknown class of distribution; ii) providing probabilistic learning bound (PLB) which further provides control over the error and convergence; iii) capable of handling intermittent distributed generation as well as load uncertainties, and iv) applicable to both balanced and unbalanced power flow with different type and size of power systems. The simulation results performed on the IEEE 30-bus and IEEE 118-bus system show that the proposed method can learn the voltage function over the power injection subspace using a small number of training samples. Further, the testing with different input uncertainty distributions indicates that complete statistical information can be obtained for the probabilistic load flow problem with average percentage relative error of order $10^{-3}$\% on 50000 test points.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods