Nonconvex Matrix Factorization from Rank-One Measurements

We consider the problem of recovering low-rank matrices from random rank-one measurements, which spans numerous applications including covariance sketching, phase retrieval, quantum state tomography, and learning shallow polynomial neural networks, among others. Our approach is to directly estimate the low-rank factor by minimizing a nonconvex quadratic loss function via vanilla gradient descent, following a tailored spectral initialization... (read more)

Results in Papers With Code
(↓ scroll down to see all results)