Detection of Nonlinear Behavior in Voltage Source Converter Control in Wind Farms Based on Higher-Order Spectral Analysis

17 Oct 2022  ·  Zetian Zheng, Chen Shen ·

In recent years, the sub-synchronous oscillation (SSO) accidents caused by wind power have received extensive attention. A method is needed to distinguish if nonlinear behavior exists in the recorded equal-amplitude accident waveforms, so that different methods can be adopted to analyze the mechanism of the oscillation. The theory of higher-order statistics (HOS) has become a powerful tool for detection of nonlinear behavior (DNB) in production quality control since 1960s. However, HOS analysis has been applied in mechanical condition monitoring and fault diagnosis, even after being introduced into the power system and wind farms. This paper focuses on the voltage source converter (VSC) control systems in wind farms and tries to detect the nonlinear behavior caused by the bilateral or unilateral saturation hard limits based on HOS analysis. First, the traditional describing function is extended to obtain more frequency domain information, and hereby the harmonic characteristics of bilateral and the unilateral saturation hard limit are studied. Then the bispectrum and trispectrum are introduced as HOS, which are extended into bicoherence and tricoherence spectrums to eliminate the effects from linear parts in the VSC control system. The effectiveness of DNB and classification based on HOS is strictly proved and its detailed calculation and estimation process is illustrated. Finally, the proposed method is demonstrated and further discussed through simulation results.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here