Nonlinear input design as optimal control of a Hamiltonian system

6 Mar 2019  ·  Jack Umenberger, Thomas B. Schön ·

We propose an input design method for a general class of parametric probabilistic models, including nonlinear dynamical systems with process noise. The goal of the procedure is to select inputs such that the parameter posterior distribution concentrates about the true value of the parameters; however, exact computation of the posterior is intractable. By representing (samples from) the posterior as trajectories from a certain Hamiltonian system, we transform the input design task into an optimal control problem. The method is illustrated via numerical examples, including MRI pulse sequence design.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here