Nonlinear Inverse Reinforcement Learning with Gaussian Processes

We present a probabilistic algorithm for nonlinear inverse reinforcement learning. The goal of inverse reinforcement learning is to learn the reward function in a Markov decision process from expert demonstrations. While most prior inverse reinforcement learning algorithms represent the reward as a linear combination of a set of features, we use Gaussian processes to learn the reward as a nonlinear function, while also determining the relevance of each feature to the expert's policy. Our probabilistic algorithm allows complex behaviors to be captured from suboptimal stochastic demonstrations, while automatically balancing the simplicity of the learned reward structure against its consistency with the observed actions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here