Nonlinear Kalman Filtering with Reparametrization Gradients

8 Mar 2023  ·  San Gultekin, Brendan Kitts, Aaron Flores, John Paisley ·

We introduce a novel nonlinear Kalman filter that utilizes reparametrization gradients. The widely used parametric approximation is based on a jointly Gaussian assumption of the state-space model, which is in turn equivalent to minimizing an approximation to the Kullback-Leibler divergence. It is possible to obtain better approximations using the alpha divergence, but the resulting problem is substantially more complex. In this paper, we introduce an alternate formulation based on an energy function, which can be optimized instead of the alpha divergence. The optimization can be carried out using reparametrization gradients, a technique that has recently been utilized in a number of deep learning models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here