Nonparametric Nearest Neighbor Random Process Clustering

20 Apr 2015Michael TschannenHelmut Bölcskei

We consider the problem of clustering noisy finite-length observations of stationary ergodic random processes according to their nonparametric generative models without prior knowledge of the model statistics and the number of generative models. Two algorithms, both using the L1-distance between estimated power spectral densities (PSDs) as a measure of dissimilarity, are analyzed... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.