Non-Stationary Bandit Learning via Predictive Sampling

4 May 2022  ·  Yueyang Liu, Xu Kuang, Benjamin Van Roy ·

Thompson sampling has proven effective across a wide range of stationary bandit environments. However, as we demonstrate in this paper, it can perform poorly when applied to non-stationary environments. We attribute such failures to the fact that, when exploring, the algorithm does not differentiate actions based on how quickly the information acquired loses its usefulness due to non-stationarity. Building upon this insight, we propose predictive sampling, an algorithm that deprioritizes acquiring information that quickly loses usefulness. A theoretical guarantee on the performance of predictive sampling is established through a Bayesian regret bound. We provide versions of predictive sampling for which computations tractably scale to complex bandit environments of practical interest. Through numerical simulations, we demonstrate that predictive sampling outperforms Thompson sampling in all non-stationary environments examined.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here