Normalized Wasserstein for Mixture Distributions With Applications in Adversarial Learning and Domain Adaptation

ICCV 2019 Yogesh Balaji Rama Chellappa Soheil Feizi

Understanding proper distance measures between distributions is at the core of several learning tasks such as generative models, domain adaptation, clustering, etc. In this work, we focus on mixture distributions that arise naturally in several application domains where the data contains different sub-populations... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet