Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio

26 Jul 2019  ·  Dmitriy Kunisky, Alexander S. Wein, Afonso S. Bandeira ·

These notes survey and explore an emerging method, which we call the low-degree method, for predicting and understanding statistical-versus-computational tradeoffs in high-dimensional inference problems. In short, the method posits that a certain quantity -- the second moment of the low-degree likelihood ratio -- gives insight into how much computational time is required to solve a given hypothesis testing problem, which can in turn be used to predict the computational hardness of a variety of statistical inference tasks. While this method originated in the study of the sum-of-squares (SoS) hierarchy of convex programs, we present a self-contained introduction that does not require knowledge of SoS. In addition to showing how to carry out predictions using the method, we include a discussion investigating both rigorous and conjectural consequences of these predictions. These notes include some new results, simplified proofs, and refined conjectures. For instance, we point out a formal connection between spectral methods and the low-degree likelihood ratio, and we give a sharp low-degree lower bound against subexponential-time algorithms for tensor PCA.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods