NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training

3 Mar 2023  ·  Binghang Lu, Christian B. Moya, Guang Lin ·

This paper presents NSGA-PINN, a multi-objective optimization framework for effective training of Physics-Informed Neural Networks (PINNs). The proposed framework uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to enable traditional stochastic gradient optimization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the NSGA-II algorithm enables satisfying the initial and boundary conditions encoded into the loss function during physics-informed training precisely. We demonstrate the effectiveness of our framework by applying NSGA-PINN to several ordinary and partial differential equation problems. In particular, we show that the proposed framework can handle challenging inverse problems with noisy data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here