Numerical Aspects for Approximating Governing Equations Using Data

24 Sep 2018  ·  Kailiang Wu, Dongbin Xiu ·

We present effective numerical algorithms for locally recovering unknown governing differential equations from measurement data. We employ a set of standard basis functions, e.g., polynomials, to approximate the governing equation with high accuracy. Upon recasting the problem into a function approximation problem, we discuss several important aspects for accurate approximation. Most notably, we discuss the importance of using a large number of short bursts of trajectory data, rather than using data from a single long trajectory. Several options for the numerical algorithms to perform accurate approximation are then presented, along with an error estimate of the final equation approximation. We then present an extensive set of numerical examples of both linear and nonlinear systems to demonstrate the properties and effectiveness of our equation recovery algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here