Numerical Solution of the Steady-State Network Flow Equations for a Non-Ideal Gas

31 Mar 2022  ·  Shriram Srinivasan, Kaarthik Sundar, Vitaliy Gyrya, Anatoly Zlotnik ·

We formulate a steady-state network flow problem for non-ideal gas that relates injection rates and nodal pressures in the network to flows in pipes. For this problem, we present and prove a theorem on uniqueness of generalized solution for a broad class of non-ideal pressure-density relations that satisfy a monotonicity property. Further, we develop a Newton-Raphson algorithm for numerical solution of the steady-state problem, which is made possible by a systematic non-dimensionalization of the equations. The developed algorithm has been extensively tested on benchmark instances and shown to converge robustly to a generalized solution. Previous results indicate that the steady-state network flow equations for an ideal gas are difficult to solve by the Newton-Raphson method because of its extreme sensitivity to the initial guess. In contrast, we find that non-dimensionalization of the steady-state problem is key to robust convergence of the Newton-Raphson method. We identify criteria based on the uniqueness of solutions under which the existence of a non-physical generalized solution found by a non-linear solver implies non-existence of a physical solution, i.e., infeasibility of the problem. Finally, we compare pressure and flow solutions based on ideal and non-ideal equations of state to demonstrate the need to apply the latter in practice. The solver developed in this article is open-source and is made available for both the academic and research communities as well as the industry.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here