$O(N^2)$ Universal Antisymmetry in Fermionic Neural Networks

26 May 2022  ·  Tianyu Pang, Shuicheng Yan, Min Lin ·

Fermionic neural network (FermiNet) is a recently proposed wavefunction Ansatz, which is used in variational Monte Carlo (VMC) methods to solve the many-electron Schr\"{o}dinger equation. FermiNet proposes permutation-equivariant architectures, on which a Slater determinant is applied to induce antisymmetry. FermiNet is proved to have universal approximation capability with a single determinant, namely, it suffices to represent any antisymmetric function given sufficient parameters. However, the asymptotic computational bottleneck comes from the Slater determinant, which scales with $O(N^3)$ for $N$ electrons. In this paper, we substitute the Slater determinant with a pairwise antisymmetry construction, which is easy to implement and can reduce the computational cost to $O(N^2)$. We formally prove that the pairwise construction built upon permutation-equivariant architectures can universally represent any antisymmetric function. Besides, this universality can be achieved via continuous approximators when we aim to represent ground-state wavefunctions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here