Object-centric Sampling for Fine-grained Image Classification

10 Dec 2014Xiaoyu WangTianbao YangGuobin ChenYuanqing Lin

This paper proposes to go beyond the state-of-the-art deep convolutional neural network (CNN) by incorporating the information from object detection, focusing on dealing with fine-grained image classification. Unfortunately, CNN suffers from over-fiting when it is trained on existing fine-grained image classification benchmarks, which typically only consist of less than a few tens of thousands training images... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet