Offline Supervised Learning V.S. Online Direct Policy Optimization: A Comparative Study and A Unified Training Paradigm for Neural Network-Based Optimal Feedback Control

29 Nov 2022  ·  Yue Zhao, Jiequn Han ·

This work is concerned with solving neural network-based feedback controllers efficiently for optimal control problems. We first conduct a comparative study of two prevalent approaches: offline supervised learning and online direct policy optimization. Albeit the training part of the supervised learning approach is relatively easy, the success of the method heavily depends on the optimal control dataset generated by open-loop optimal control solvers. In contrast, direct policy optimization turns the optimal control problem into an optimization problem directly without any requirement of pre-computing, but the dynamics-related objective can be hard to optimize when the problem is complicated. Our results underscore the superiority of offline supervised learning in terms of both optimality and training time. To overcome the main challenges, dataset and optimization, in the two approaches respectively, we complement them and propose the Pre-train and Fine-tune strategy as a unified training paradigm for optimal feedback control, which further improves the performance and robustness significantly. Our code is accessible at https://github.com/yzhao98/DeepOptimalControl.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here