On a Family of Decomposable Kernels on Sequences

26 Jan 2015  ·  Andrea Baisero, Florian T. Pokorny, Carl Henrik Ek ·

In many applications data is naturally presented in terms of orderings of some basic elements or symbols. Reasoning about such data requires a notion of similarity capable of handling sequences of different lengths. In this paper we describe a family of Mercer kernel functions for such sequentially structured data. The family is characterized by a decomposable structure in terms of symbol-level and structure-level similarities, representing a specific combination of kernels which allows for efficient computation. We provide an experimental evaluation on sequential classification tasks comparing kernels from our family of kernels to a state of the art sequence kernel called the Global Alignment kernel which has been shown to outperform Dynamic Time Warping

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here