On Abruptly-Changing and Slowly-Varying Multiarmed Bandit Problems

23 Feb 2018  ·  Lai Wei, Vaibhav Srivastava ·

We study the non-stationary stochastic multiarmed bandit (MAB) problem and propose two generic algorithms, namely, the limited memory deterministic sequencing of exploration and exploitation (LM-DSEE) and the Sliding-Window Upper Confidence Bound# (SW-UCB#). We rigorously analyze these algorithms in abruptly-changing and slowly-varying environments and characterize their performance. We show that the expected cumulative regret for these algorithms under either of the environments is upper bounded by sublinear functions of time, i.e., the time average of the regret asymptotically converges to zero. We complement our analytic results with numerical illustrations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here