On Finding Small Hyper-Gradients in Bilevel Optimization: Hardness Results and Improved Analysis

2 Jan 2023  ·  Lesi Chen, Jing Xu, Jingzhao Zhang ·

Bilevel optimization reveals the inner structure of otherwise oblique optimization problems, such as hyperparameter tuning, neural architecture search, and meta-learning. A common goal in bilevel optimization is to minimize a hyper-objective that implicitly depends on the solution set of the lower-level function. Although this hyper-objective approach is widely used, its theoretical properties have not been thoroughly investigated in cases where \textit{the lower-level functions lack strong convexity}. In this work, we first provide hardness results to show that the goal of finding stationary points of the hyper-objective for nonconvex-convex bilevel optimization can be intractable for zero-respecting algorithms. Then we study a class of tractable nonconvex-nonconvex bilevel problems when the lower-level function satisfies the Polyak-{\L}ojasiewicz (PL) condition. We show a simple first-order algorithm can achieve better complexity bounds of $\tilde{\mathcal{O}}(\epsilon^{-2})$, $\tilde{\mathcal{O}}(\epsilon^{-4})$ and $\tilde{\mathcal{O}}(\epsilon^{-6})$ in the deterministic, partially stochastic, and fully stochastic setting respectively. The complexities in the first two cases are optimal up to logarithmic factors.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here