On closedness of law-invariant convex sets in rearrangement invariant spaces

19 Dec 2019 Tantrawan Made Leung Denny H.

This paper presents relations between several types of closedness of a law-invariant convex set in a rearrangement invariant space $\mathcal{X}$. In particular, we show that order closedness, $\sigma(\mathcal{X},\mathcal{X}_n^\sim)$-closedness and $\sigma(\mathcal{X},L^\infty)$-closedness of a law-invariant convex set in $\mathcal{X}$ are equivalent, where $\mathcal{X}_n^\sim$ is the order continuous dual of $\mathcal{X}$... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet