On complexity of branching droplets in electrical field

15 Jan 2019  ·  Mohammad Mahdi Dehshibi, Jitka Cejkova, Dominik Svara, Andrew Adamatzky ·

Decanol droplets in a thin layer of sodium decanoate with sodium chloride exhibit bifurcation branching growth due to interplay between osmotic pressure, diffusion and surface tension. We aimed to evaluate if morphology of the branching droplets changes when the droplets are subject to electrical potential difference. We analysed graph-theoretic structure of the droplets and applied several complexity measures. We found that, in overall, the current increases complexity of the branching droplets in terms of number of connected components and nodes in their graph presentations, morphological complexity and compressibility.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here