On Equivalence of Martingale Tail Bounds and Deterministic Regret Inequalities

13 Oct 2015  ·  Alexander Rakhlin, Karthik Sridharan ·

We study an equivalence of (i) deterministic pathwise statements appearing in the online learning literature (termed \emph{regret bounds}), (ii) high-probability tail bounds for the supremum of a collection of martingales (of a specific form arising from uniform laws of large numbers for martingales), and (iii) in-expectation bounds for the supremum. By virtue of the equivalence, we prove exponential tail bounds for norms of Banach space valued martingales via deterministic regret bounds for the online mirror descent algorithm with an adaptive step size. We extend these results beyond the linear structure of the Banach space: we define a notion of \emph{martingale type} for general classes of real-valued functions and show its equivalence (up to a logarithmic factor) to various sequential complexities of the class (in particular, the sequential Rademacher complexity and its offset version). For classes with the general martingale type 2, we exhibit a finer notion of variation that allows partial adaptation to the function indexing the martingale. Our proof technique rests on sequential symmetrization and on certifying the \emph{existence} of regret minimization strategies for certain online prediction problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here