On Exploring Undetermined Relationships for Visual Relationship Detection

CVPR 2019  ·  Yibing Zhan, Jun Yu, Ting Yu, DaCheng Tao ·

In visual relationship detection, human-notated relationships can be regarded as determinate relationships. However, there are still large amount of unlabeled data, such as object pairs with less significant relationships or even with no relationships. We refer to these unlabeled but potentially useful data as undetermined relationships. Although a vast body of literature exists, few methods exploit these undetermined relationships for visual relationship detection. In this paper, we explore the beneficial effect of undetermined relationships on visual relationship detection. We propose a novel multi-modal feature based undetermined relationship learning network (MF-URLN) and achieve great improvements in relationship detection. In detail, our MF-URLN automatically generates undetermined relationships by comparing object pairs with human-notated data according to a designed criterion. Then, the MF-URLN extracts and fuses features of object pairs from three complementary modals: visual, spatial, and linguistic modals. Further, the MF-URLN proposes two correlated subnetworks: one subnetwork decides the determinate confidence, and the other predicts the relationships. We evaluate the MF-URLN on two datasets: the Visual Relationship Detection (VRD) and the Visual Genome (VG) datasets. The experimental results compared with state-of-the-art methods verify the significant improvements made by the undetermined relationships, e.g., the top-50 relation detection recall improves from 19.5% to 23.9% on the VRD dataset.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here