On MAP Inference by MWSS on Perfect Graphs

26 Sep 2013  ·  Adrian Weller, Tony S. Jebara ·

Finding the most likely (MAP) configuration of a Markov random field (MRF) is NP-hard in general. A promising, recent technique is to reduce the problem to finding a maximum weight stable set (MWSS) on a derived weighted graph, which if perfect, allows inference in polynomial time. We derive new results for this approach, including a general decomposition theorem for MRFs of any order and number of labels, extensions of results for binary pairwise models with submodular cost functions to higher order, and an exact characterization of which binary pairwise MRFs can be efficiently solved with this method. This defines the power of the approach on this class of models, improves our toolbox and expands the range of tractable models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here