On Modality Bias Recognition and Reduction

25 Feb 2022  ·  Yangyang Guo, Liqiang Nie, Harry Cheng, Zhiyong Cheng, Mohan Kankanhalli, Alberto del Bimbo ·

Making each modality in multi-modal data contribute is of vital importance to learning a versatile multi-modal model. Existing methods, however, are often dominated by one or few of modalities during model training, resulting in sub-optimal performance. In this paper, we refer to this problem as modality bias and attempt to study it in the context of multi-modal classification systematically and comprehensively. After stepping into several empirical analysis, we recognize that one modality affects the model prediction more just because this modality has a spurious correlation with instance labels. In order to primarily facilitate the evaluation on the modality bias problem, we construct two datasets respectively for the colored digit recognition and video action recognition tasks in line with the Out-of-Distribution (OoD) protocol. Collaborating with the benchmarks in the visual question answering task, we empirically justify the performance degradation of the existing methods on these OoD datasets, which serves as evidence to justify the modality bias learning. In addition, to overcome this problem, we propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned according to the training set statistics. Thereafter, we apply this method on eight baselines in total to test its effectiveness. From the results on four datasets regarding the above three tasks, our method yields remarkable performance improvements compared with the baselines, demonstrating its superiority on reducing the modality bias problem.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here