On Model Selection Consistency of Lasso for High-Dimensional Ising Models

16 Oct 2021  ·  Xiangming Meng, Tomoyuki Obuchi, Yoshiyuki Kabashima ·

We theoretically analyze the model selection consistency of least absolute shrinkage and selection operator (Lasso) for high-dimensional Ising models. For random regular (RR) graphs of size $p$ with regular node degree $d$ and uniform couplings $\theta_0$, it is rigorously proved that Lasso without post-thresholding is model selection consistent in the whole paramagnetic phase with the same order of sample complexity $n=\Omega{(d^3\log{p})}$ as that of $\ell_1$-regularized logistic regression ($\ell_1$-LogR). This result is consistent with the conjecture in $\textit{Meng, Obuchi, and Kabashima 2021}$ using the non-rigorous replica method from statistical physics and thus complements it with a rigorous proof. For general tree-like graphs, it is demonstrated that the same result as RR graphs can be obtained under mild assumptions of the dependency condition and incoherence condition. Moreover, we provide a rigorous proof of the model selection consistency of Lasso with post-thresholding for general tree-like graphs in the paramagnetic phase without further assumptions on the dependency and incoherence conditions. Experimental results agree well with our theoretical analysis.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here