On Norm-Agnostic Robustness of Adversarial Training

15 May 2019  ·  Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin ·

Adversarial examples are carefully perturbed in-puts for fooling machine learning models. A well-acknowledged defense method against such examples is adversarial training, where adversarial examples are injected into training data to increase robustness. In this paper, we propose a new attack to unveil an undesired property of the state-of-the-art adversarial training, that is it fails to obtain robustness against perturbations in $\ell_2$ and $\ell_\infty$ norms simultaneously. We discuss a possible solution to this issue and its limitations as well.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here